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a b s t r a c t

Objectives. The aim of this study was the interfacial characterization and the determination

of bond strength of commercially available low fusing dental porcelain for Ti.

Methods. Eight materials were included in this study: Duceratin, Duceratin Plus, Initial Ti,

Ti-22, TiKrom, TitanKeramik, Triceram (powder) and Triceram (paste). Eight ISO 9693 bond

characterization specimens from each porcelain were prepared according to manufactur-

ers’ instructions. One specimen from each group was embedded in acrylic resin and after

metallographic preparation was studied under an SEM. Interfacial characterization was

carried out with Backscattered Electron Imaging and X-ray EDS analysis operating in line

scan mode. Metal–ceramic specimens were tested in three point bending at a crosshead

speed of 1.5 mm/min according to ISO 9693 requirements. Additionally the fracture mode

(adhesive–cohesive) of all specimens was evaluated employing SEM/EDS analysis. The

results of bond strength and adhesive percentage were statistically analysed with one-way

ANOVA and SNK multiple comparison test (a = 0.05). Additionally the possible correlation

between the bond strength and fracture mode was also tested using Pearson test.

Results. Interfacial characterization showed the mutual diffusion of Ti, Si, O and La

along the Ti–ceramic interface. Only in Tricerap (paste) Zr showed an increased con-

centration at the interface. The results of bond strength classified the materials

in the following decreasing order: TiKrom > Duceratin > Initial Ti > Duceratin Plus > Ti-

22 > Triceram(paste) > Triceram(powder) >TitanKeramik. No correlation (r = 0.132) between
the fracture mode and bond strength of the selected material denoting that the fracture

mode is irrelevant with the bond strength of Ti–ceramic joint and thus the former should

not be applied for comparison among different materials.

Significance. According to the results of this study the materials tested provided great differ-

ence in interfacial analysis and bond strength with metallic Ti.

emy
© 2009 Acad
∗ Corresponding author. Tel.: +30 2107461102; fax: +30 2107461306.
E-mail address: szinelis@dent.uoa.gr (S. Zinelis).

1 Commercial Dental Technician.
0109-5641/$ – see front matter © 2009 Academy of Dental Materials. Pu
doi:10.1016/j.dental.2009.11.004
of Dental Materials. Published by Elsevier Ltd. All rights reserved.

1. Introduction

During recent decades, commercially pure titanium (cp
Ti) has been used in dentistry [1–6] for metal–ceramic

restorations because of its excellent biocompatibility, good
corrosion resistance, and adequate mechanical properties
[7–9].

blished by Elsevier Ltd. All rights reserved.

mailto:szinelis@dent.uoa.gr
dx.doi.org/10.1016/j.dental.2009.11.004


d e n t a l m a t e r i a l s 2 6 ( 2 0 1 0 ) 264–273 265

Table 1 – The commercial names, the firing temperature and the coefficient of thermal expansion (CTE) of the porcelains
tested as provided by the manufacturers.

Brand names Material type Manufacturers Firing temp. (◦C) CTE (×10−6 K−1)

Duceratin Powder Degussa Dental, Hanau, Germany 830 N/Aa

Duceratin plus Powder Degussa Dental, Hanau, Germany 780 12.5 (25–500 ◦C)
Initial Ti Powder GC Corporation, Tokyo, Japan. 810 N/Ab

Ti-22 Powder Noritake, Nagoya, Japan 800 9.7∼10.7 (25–500 ◦C)
TiKrom Powder Orotig, Verona, Italy 810 N/Aa

Titankeramik Paste Vita, Bad Sackingen, Germany 800 N/Aa

Triceram Powder Esprident-Dentaurum, Ispringen, Germany 795 9.4∼9.5b
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Triceram Paste Esprident-Dentaurum,

a Not available
b Temperature range is not provided

Strong bonding of porcelain to cp Ti is critical for the
ongevity of metal–ceramic restorations [10]. Contrary to con-
entional alloys, Ti is rapidly oxidized during porcelain firing at
emperatures above 800 ◦C providing a thick and non-adherent
ayer of Ti oxide [11–13], that compromises the metal–ceramic
ond strength compared to conventional dental alloys [14–16]

ncreasing the risk of failure [1,2,4–6,17]. Various surface treat-
ents have been introduced to overcome this limitation

uch as surface roughening [18,19], preoxidation [20], etching
21,22], and the application of bonding coatings [23–25]. How-
ver, only the roughening of metallic surface prior to porcelain
pplication has been adopted as a standard operating proce-
ure [26].

Although extensive research has been done for the evalua-
ion of metal–ceramic bond strength of low fusing porcelains
o cp Ti in most cases the results are not directly compa-
able due to the great differences in the research protocols
mployed. In the relevant literature more than fifteen different
etal–ceramic bond strength tests [27] have been used and the

esults have been reported in three different ways including
ebonding load (Nt) [15], bond strength in MPa [14,16,28] and
racture mode [21,23,29] as percentage of cohesive and adhe-
ive failures. The most recent specification on assessment of
etal–ceramic bonding of the International Standardization
rganization ISO 9693 [30] provides a sound method for the
tandardized evaluation of bond strength of metal–ceramic
ystems and meets the criteria for a comparative evalua-
ion of metal–ceramic bond strength, independently from the

echanical properties of alloys tested.
The aim of the present study was to evaluate the com-

liance of eight commercially available dental porcelains for
eneering cp Ti with ISO 9693:1999 specification and to char-
cterize the morphology and elemental composition of the
etal–ceramic interfaces.

. Materials and methods

.1. Specimens preparation

eventy rectangular wax (Anutex; Kemdent Den-
al Products Ltd, Wiltshire, United Kingdom) pattern

30 mm × 3.5 mm × 1 mm) were invested with magnesia
ased investment material (Titavest CB, Morita, Kyoto, Japan)
nd casting were performed with grade II cp Ti (J. Morita Co.,
yoto, Japan) in a two chamber inert-gas vacuum pressure
ngen, Germany 795 9.2 (25–400 C)

casting machine (Cyclarc II, Morita, Kyoto Japan). Castings
were sandblasted with 110 �m alumina oxide particles (Al2O3)
for the removal of the investment material. The porosity
of all specimens was examined radiographically. A dental
radiographic unit (Gendex 756 DC; Dentsply, Milano, Italy)
was used under the following conditions: 65 kV accelerating
voltage 7 mA beam current, 13 cm distance from the source
to charged couple device sensor and 0.8 s exposure time.
The specimens with internal pores were excluded from the
study. The selected specimens were ground on all sides
with 600 grit SiC paper under continuous water cooling in
a grinding/polishing machine (Ecomt III, Buehler Bluff Lake,
Ill). All specimens were ground up to final dimensions of
25 mm × 3 mm × 0.45–0.55 mm. Then one side of each spec-
imen was ground up to 2000 grit and polished with 6 �m,
diamond paste (DP Paste, Struers, Copenhagen, Denmark).
Before the porcelain application final cleaning was performed
with hot distilled water in ultrasonic cleaner for 10 min.
Fifty six specimens were randomly divided in eight groups
and the specimens of each group were covered with the
porcelains shown in Table 1 according to their manufacturers’
instructions. Metallic surface preparation (sandblasting with
Al2O3 particles) and successive porcelain layers (bonding
agent, opaque, dentin and glaze) were applied at the center
of each specimen over an 8 mm length and 1 mm thickness.
One specimen from each group to be used for interfacial
analysis was covered with porcelain without prior sandblast-
ing contrary to manufacturers’ instructions. To minimize the
effect of handling variations, all the metal–ceramic speci-
mens were prepared by one dental technician (the second
author).

2.2. Interfacial characterization

One specimen from each group was embedded in an acrylic
resin (Durofix-2, Struers). After 24 h storage in room tem-
perature the specimens were ground with silicon carbide
papers (220–2000 grit size) under continuous water cool-
ing. Final polishing was performed with 0.25 �m diamond
paste (DP Paste, Struers) in the grinding/polishing machine
(Ecomet III, Buehler, Lake Bluff, IL, USA). The specimens

were ultrasonically cleaned for 10 min in a water bath and
sputter-coated with carbon in a sputter-coating unit (SCD
004 Sputter-Coater with OCD 30 attachment, Bal-Tec, Vaduz,
Liechtenstein). The metal–ceramic interface was examined in
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Fig. 1 – Three point bending of a metal–ceramic specimen
according to ISO 9693:1999. The loading was applied on the
metallic strip with a crosshead speed of 1.5 mm/min while

the distance between the supporting points is 20 mm.

a scanning electron microscope (Quanta 200, FEI, Hillsboro,
Or, USA) equipped with a super ultra-thin Be window X-ray
EDS detector (Sapphire CDU, Edax Int, Mahwaw, NJ, USA).
Interfaces were imaged with Backscattered Electron Imaging
(BEI) employing a solid state backscattered detector under
30 kV acceleration voltage, 110 �A beam current and 1500×
nominal magnification. Additionally, the elemental distribu-
tion across the metal–ceramic interface was determined by
using line scan EDS analysis. The interface was imaged in
30,000× magnification and the data were collected across a
8.36 �m line each side the metal–ceramic interface employing
14 point of analysis per micron. The results were smoothened
employing the Genesis 5.1 software (Edax Int, Mahwaw, NJ,
USA).

2.3. Evaluation of bond strength

Three cast specimens without porcelain were subjected to a
three point bending test to determine the modulus of elasticity
of cp Ti castings, using a universal testing machine (Tensome-
ter10, Monsanto, Swindon, UK). The specimens were loaded
at the center with a crosshead speed of 1.5 mm/min, and the
deflection and load were continuously recorded. The elastic
modulus of Ti in bending was determined according to the
following formula:

E = L3�P

4bh3�d

where E is the elastic modulus in bending, L is the span
between supporting rods (20 mm), b is the specimen width
(3 mm), h is the specimen thickness (0.5 mm), and �P and
�d are the load and deflection increment, respectively,
between two specific points in the elastic portion of the
curve. The remaining six metal–ceramic specimens of each
group were loaded in the three point bending device at
the same crosshead speed of 1.5 mm/min (Fig. 1). Porce-

lain debonding was determined by a sudden decrease in the
load–deflection graphs. The debonding load was recorded, and
the metal–ceramic bond strength in units of MPa was calcu-
lated according to the following formula provided by ISO 9693
6 ( 2 0 1 0 ) 264–273

[30]:

Bond strength = F × k

where F is the debonding load (N t), and k is a coefficient cal-
culated from the ISO specification that is dependent on the
modulus of elasticity of the alloy and height of each specimen.

2.4. Fracture mode analysis

The metallic fractured surfaces of all specimens were sputter-
coated with carbon in a sputter-coating unit (SCD 004
Sputter-Coater with OCD 30 attachment, Bal-Tec, Vaduz,
Liechtenstein). The fractured surfaces were examined in
SEM employing secondary electron images (SEI) under 25 kV
accelerating voltage 110 �A beam current and 100× nomi-
nal magnification. One EDS spectrum was obtained from the
central region of each specimen under 30 kV accelerating volt-
age 100 �A beam current and 1.28 mm × 1.28 mm sampling
window. Quantitative analysis was performed in standardless
mode using the Genesis (5.1 version) software. (Edax Int). The
area fraction of the adherent bonding agent residues (AFBA)
on each specimen after porcelain debonding was calculated
by the following equation [21]:

% porcelain adherence = 100 ×
[

Sif − Sit
Sip − Sit

]

where Sif is the weight percent of silicon on the specimen
surface after porcelain fracture, Sip is the weight percent of
silicon on the specimen surface covered with opaque porce-
lain, and Sit is the weight percent silicon on the Ti surface
before the porcelain firing. In the case of TiKrom and Initial Ti
the concentration of La was used instead of Si.

2.5. Statistical analysis

The results of bond strength and fracture mode were statisti-
cally analysed one-way ANOVA and SNK multiple comparison
test (a = 0.05). To reveal the strength of association between
bond strength and fracture mode Pearson correlation proce-
dure was applied.

3. Results

3.1. Interfacial characterization

Backscattered Electron Images (BEI) from the interface of all
materials tested with Ti are presented in Fig. 2. These greyscale
images provide information of mean atomic number contrast.
In four cases (2c, 2e, 2f and 2h) the zone of bonding agent is
clearly distinguished between the Ti and opaque layer. Based
on imaged contrast all bonding agents seem to be multiphase
materials expect from the bonding agent of TitanKeramik
(Fig. 2f), that demonstrated excessive porosity. Additionally in
Fig. 2a, b, d and g distinct zones of lower mean atomic number
compared to Ti (pointed by the arrows) were observed along

the Ti–ceramic interface. Fig. 3 shows the results from the line
scan EDS analysis of the materials tested. Ti depicted a pro-
gressively reduction from metal to bonding agent, while Si and
O showed the inverse behaviour. In Initial Ti (Fig. 3c) O demon-
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Fig. 2 – Backscattered Electron Images of the Ti–porcelain interfaces for the materials tested. (a) Duceratin, (b) Duceratin
Plus, (c) Initial Ti, (d) Ti-22, (e) TiKrom, (f) TitanKeramik, (g) Triceram (powder) and (h) Triceram (paste). In four cases (c, e, f
and h) the zone of bonding agent is clearly distinguished between the Ti (left white region) and the opaque layer. The width
of bonding agent zone is estimated approximately 10 �m for Initial Ti (c), 20 �m for Tikrom (e), 40 �m for TitanKeramik (f)
and Triceram paste (h). A distinct zone with lower mean atomic number are pointed by the arrows in (a), (b), (d) and (g).
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Fig. 3 – Line scan EDS analysis demonstrating the variation of each element from Ti toward the bonding agent (30,000×).
The horizontal line denotes the directions of analysis. (a) Duceratin, (b) Duceratin Plus, (c) Initial Ti, (d) Ti-22, (e) TiKrom, (f)
TitanKeramik, (g) Triceram (powder) and (h) Triceram (paste). Line scans have been expanded in y-axis for the sake of clarity

mon
and thus should not be used for quantitative comparisons a

strated an almost steady concentration while Zr showed high
concentration at the interface of Ti–Triceram (paste) (Fig. 3h).

3.2. Bond strength
A typical load–deflection curve under three point bending is
illustrated in Fig. 4. The sudden decrease in loading denotes
porcelain debonding. The bond strength results are presented
in Table 2 in decreasing order.
g elements.

3.3. Fracture mode

Representative secondary electron images (SEI) from frac-
tured surfaces of Ti–ceramic specimens are presented in
Fig. 5. Duceratin, Duceratin Plus, Triceram (powder) Triceram

(paste) and Ti-22 demonstrated mainly adhesive fracture at
Ti–ceramic interface (Fig. 5a). Initial Ti exhibited predomi-
nately cohesive fracture within bonding agent (Fig. 5b) while
TiKrom showed cohesive fracture within bonding agent and
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Fig. 4 – Representative load–deflection curve from three
point bending of metal–ceramic specimens. The abrupt
decrease in load denotes debonding of ceramic layer. Note
t
m

o
t
p
a
p
c
l

Table 2 – Results of bond strength measurements. The
same letters in SNK grouping denotes the mean values
without statistical significant differences (p > 0.05).

Material Bond strength (MPa) SNK grouping

TiKrom 45 ± 5 A
Duceratin 42 ± 8 A
Initial Ti 31 ± 5 B
Duceratin plus 31 ± 3 B
Ti-22 29 ± 5 BC
Triceram (paste) 28 ± 3 C
Triceram (powder) 21 ± 4 C
Titankeramik 21 ± 3 C

Table 3 – Results of percentage of cohesive fracture
(AFAP) within porcelain layer. The same letters in SNK
grouping denotes the mean values without statistical
significant differences (p > 0.05).

Material AFBP (%) SNK grouping

Tikrom 88.0 ± 5.2 A
Titankeramic 83.3 ± 2.1 A
Initial Ti 67.1 ± 2.8 B
Duceratin 4.6 ± 2.5 C

F
r
(
s
f

he difference in slop after debonding where only the
etallic is loaded.

paque layers (Fig. 5c). TitanKeramik depicted cohesive frac-
ure within bonding agent with extensive presence of open
ores (Fig. 5d). The quantitative results of the failure mode

nalysis of cohesive–adhesive are shown in Table 3. Fig. 6
resents a plot of the bond strength versus the percentage of
ohesive fracture data for each material along with the corre-
ation coefficient (r = 0.132). There was no correlation between

Triceram (paste) 4.5 ± 1.1 C
Triceram (powder) 3.8 ± 1.4 D
Ti-22 1.2 ± 0.9 E
Duceratin Plus 0.7 ± 0.2 F

ig. 5 – Secondary electron images (SEI) from the metallic fractured surfaces of Ti–ceramic specimens (100×). (a) A
epresentative image of adhesive fracture at Ti–ceramic interface Duceratin, Duceratin Plus, Triceram (powder), Triceram
paste) and Ti-22. (b) Cohesive fracture within ceramic layer of Ti–Initial Ti specimens. (c) Cohesive fracture of Ti–TiKrom
pecimens. Darker regions are appended to cohesive fracture within bonding agent and lighter to opaque layer. (d) Cohesive
racture within the bonding agent of TitanKeramik with excessive porosity.
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Fig. 6 – There are no significant relationships between any

pair of variables in the correlation table between cohesive
fracture and bond strength (p > 0.050).

the bond strength and the fracture mode of materials included
in this study.

3.4. Discussion

Contrary to manufacturers’ instructions (sandblasting with
Al2O3 particles) for Ti surface preparation before the appli-
cation of bonding agent the surface of specimens used in
this study for interfacial analysis was only metallographicall
ground and polished. This was done deliberately in order to
facilitate the location of interface especially in high magnifica-
tions and to avoid the surface contamination of Al2O3 particles
retained on the surface after sandblasting. These particles
masking the real surface distribution of Al and O content at
the Ti–porcelain interface.

In four cases (Duceratin, Duceratin Plus, Ti-22, and Trice-
ram powder) a zone with lower atomic number compared to Ti,
along the Ti–porcelain interface was found (Fig. 2). These find-
ings are in accordance with previous studies [14,31,32] where
this zone has been associated with subsurface oxidation dur-
ing firing. Although this is a logical assumption it requires
further analysis. These four bonding agents have two com-
mon characteristics. They are all SiO2-based [33] and they are
delivered in powder form. These materials are mixed with
an aqueous solution producing a slurry that is applied and
fired on Ti surface. Therefore, a possible mechanism for Ti
subsurface oxidation could be that Ti has enough time to be
oxidized before the particles sintered providing a protective
layer. This mechanism is also supported by the fact that sub-
surface oxidation did not occur in paste type SiO2-based [33]
bonding agents TitanKeramik (Fig. 2f) and Triceram (paste)
(Fig. 2h) where probably an organic substance is used as binder.
It also profound from the cross section images that the width
of bonding agent region varies significantly among materials
possibly due to differences in viscosity and contraction dur-
ing firing. Although all bonding agents presented a few pores,
TitanKeramik demonstrated excessive porosity with a random
distribution that is in agreement with previous studies [32,34]
and might be attributed to the burn out of the organic phase

of the bonding agent during firing.

Line scan analysis provided interesting information on the
mutual elemental diffusion at the Ti–ceramic interface. In all
cases the decreasing in Ti composition starting 1–2 �m below
6 ( 2 0 1 0 ) 264–273

the interface as it appeared in BEI while the porcelain elements
(Si, O and La) exhibited inverse distribution, a finding that is
in full accordance with the results of previous research [32].
This finding denotes that the diffusion of the aforementioned
elements have taken place at the interface. A proposed mecha-
nism is that Ti reduces SiO2 at the interface producing Ti2O3 or
TiO and the free Si reacts with Ti to form the Ti complex com-
pound Ti5Si3 [35]. It might be expected that Ti reduces other
oxides of porcelain with lower chemical affinity to O compared
to Ti. This behaviour is commonly known as metallothermic
reaction and is described by following formula:

Ti + MxOy → TiOy + xM

where M stands for any metal. Among all the profiles tested
only the Zr profile at the Ti–Triceram (paste) interface showed
the maximum value at the Ti–ceramic interface. An explana-
tion for this could be the segregation of Zr based particles at
the interface during the firing of bonding agent. It is worth-
while to be noted that although Initial Ti and Triceram (paste)
are delivered as single phase particles [33], they demonstrate a
two phase structure as presented in Fig. 2c and h respectively.
This behaviour might be readily explained by the nucleation
and precipitation of new phases during firing of bonding
agents.

There are several mechanical tests that have been used to
determine the debonding strength between metal and porce-
lain and porcelain including a plethora of flexural and shear
designs [27]. Generally the bond strength of metal–ceramic
systems is evaluated with the three point bending accord-
ing to ISO 9693:1999 [30] or with the shear testing. The latter
although reliable, cannot be directly compared with the three
point bending results. In some cases only the fracture mode
has been used as a classification criterion [21,23,29] based on
the former version of ISO 9693 standard, where metal–ceramic
strips were bended over a rod to a 90◦ angle of the specimens
ends. The specimens were then flattened and the percentage
of adherent porcelain was determined along the predominant
part of the middle third of the metallic substrate. The pass/fail
criterion was that the adherent porcelain should cover more
than 50% of the tested area implying that the fracture should
be more than 50% cohesive within porcelain. However, it is
obvious that such a test cannot provide qualitative results. The
lastest revision of ISO 9693 in 1999 based on the full adoption of
the DIN 13927 [36] also commonly known as Schwickerath test
[37]. According to this specification the metal–ceramic system
comply with the requirements pass ISO 9693 when four out of
six specimens have a debonding strength higher than 25 MPa
[30].

Table 4 summarizes all the bond strength values found in
relevant literature for the materials included in this study.
The values are separated depending on the calculation meth-
ods. Although the three point bending has been applied in
many cases, the calculation of bond strength has been inap-
propriately estimated employing the formulas for bending of
uniform beams or maximum surface tensile stress [38]. Such

erroneous approach has bond strength values up to 300 MPa
[39] and thus all the values provided by the single beam theory
will not be further evaluated. Further details for the mechan-
ical theory bending of composite beams and mathematical
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calculations for ISO formulas are given in previously published
studies [38,39].

TiKrom showed the highest bond strength among mate-
rials tested with values comparable to modern Ni–Cr alloys
[40]. The TiKrom bonding agent is a La–Ba based material [33]
and the increased bong strength might be attributed to the
beneficial effect of Ba content on Ti–porcelain joint [41]. Unfor-
tunately, no comparable data for TiKrom and Initial Ti were
found in the literature. Duceratin demonstrated a great vari-
ance in bond strength values ranging from 17 to 42 MPa. Two
independent studies provided similar mean values of 34 and
32 MPa while the decrease in 28 MPa is appended to the fir-
ing conditions of porcelain layers in atmospheric air rather
than conventional vacuum of dental ovens proposed for this
treatment. However, there is no explanation for the very low
value of 17 MPa apart from possible complications with the
preparation of metal–ceramic specimens. The highest value
for Duceratin is provided by the current study (although with
high standard deviation) is difficult to be explained since
Duceratin and Deceratin Plus bonding agents have slight dif-
ferences in their elemental compositions [33]. Therefore the
bond strength of Duceratin might have been overestimated
in present study. Small differences were found for Duceratin
Plus with the results of a previous study while the results for
Ti-22 are within the range of reported values. Triceram (paste),
Triceram(powder) and TitanKeramik showed very similar val-
ues with the results found in the literature (Table 4). The only
exception is the 37 MPa value that is readily appended to the
fact that the supportive span of the three point bending that
used was different from that proposed by the ISO specifica-
tion. It is also worthwhile to be noted that Triceram (paste) and
TitanKeamik have almost similar values even among indepen-
dent research studies, a behaviour that might be attributed
to the fact that bonding agent in paste form are less tech-
nique sensitive and thus could provide more reproducible
results among different dental laboratories. In general, these
two materials showed less standard deviation compared to the
porcelains with powder bonding agents. High standard devi-
ations (6–10 MPa) were also found by a recent study [40] for
many modern porcelains for precious and base dental alloys.
Finally Triceram(powder) and TitanKeramik did not comply
with ISO requirements.

According to fracture mode analysis Duceratin, Duceratin
Plus, Ti-22, Triceram (powder) and Triceram (paste) demon-
strated mainly adhesive fracture mode (Fig. 5 and Table 4) a
finding that is in accordance with previous studies [31,32]. This
type of fracture mode implies that the weakest mechanically
joint is the Ti–porcelain interface. Statistical analysis showed
that there was not correlation between the bond strength
and the fracture mode. Although TiKrom and Titankeramik
demonstrated mainly cohesive fractures which is in accor-
dance with previous findings [21–23,31,32] Tikrom yielded the
highest bond strength and the TitanKeramik the lowest among
the materials tested. This discrepancy can be caused by the
great differences in cohesive strength of the bonding agents
themselves. Two materials have completely different formu-

lations. The bonding agent of TiKrom consists of La–Ba oxides
while TitanKeramik is a silicon dioxide based material [33].
Additionally TitanKeramik demonstrates an intense poros-
ity distribution whereas the bonding agent of Tikrom yields
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a rather sound structure. Therefore it is readily explained
that the fracture mode cannot be used for direct comparison
among different porcelains.

Under the experimental conditions of the present study the
materials tested showed great variations in bond strength and
interfacial characteristics implying that the currently available
low fusing porcelains might have also significant differences
in their clinical behaviour.
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